Mitochondrial nitric oxide mediates decreased vulnerability of hippocampal neurons from immature animals to NMDA.

نویسندگان

  • Jeremy D Marks
  • Chan Boriboun
  • Janice Wang
چکیده

Mitochondrial membrane potential (DeltaPsim)-dependent Ca2+ uptake plays a central role in neurodegeneration after NMDA receptor activation. NMDA-induced DeltaPsim dissipation increases during postnatal development, coincident with increasing vulnerability to NMDA. NMDA receptor activation also produces nitric oxide (NO), which can inhibit mitochondrial respiration, dissipating DeltaPsim. Because DeltaPsim dissipation reduces mitochondrial Ca2+ uptake, we hypothesized that NO mediates the NMDA-induced DeltaPsim dissipation in immature neurons, underlying their decreased vulnerability to excitotoxicity. Using hippocampal neurons cultured from 5- and 19-d-old rats, we measured NMDA-induced changes in [Ca2+]cytosol, DeltaPsim, NO, and [Ca2+]mito. In postnatal day 5 (P5) neurons, NMDA mildly dissipated DeltaPsim in a NO synthase (NOS)-dependent manner and increased NO. The NMDA-induced NO increase was abolished with carbonyl cyanide 4-(trifluoromethoxy)phenyl-hydrazone and regulated by [Ca2+]mito. Mitochondrial Ca2+ uptake inhibition prevented the NO increase, whereas inhibition of mitochondrial Ca2+ extrusion increased it. Consistent with this mitochondrial regulation, NOS and cytochrome oxidase immunoreactivity demonstrated mitochondrial localization of NOS. Furthermore, NOS blockade increased mitochondrial Ca2+ uptake during NMDA. Finally, at physiologic O2 tensions (3% O2), NMDA had little effect on survival of P5 neurons, but NOS blockade during NMDA markedly worsened survival, demonstrating marked neuroprotection by mitochondrial NO. In P19 neurons, NMDA dissipated DeltaPsim in an NO-insensitive manner. NMDA-induced NO production was not regulated by DeltaPsim, and NOS immunoreactivity was cytosolic, without mitochondrial localization. NOS blockade also protected P19 neurons from NMDA. These data demonstrate that mitochondrial NOS mediates much of the decreased vulnerability to NMDA in immature hippocampal neurons and that cytosolic NOS contributes to NMDA toxicity in mature neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of the effect of nitric oxide within hippocampal CA1 area on spatial learning and memory in morphine dependent rats

Introduction: There are evidences showing the role of nitric oxide in the opiate reward properties. The role of nitric oxide signaling pathway as an intracellular mechanism on augmentation of long term potentiation in hippocampal CA1 area of rats is also confirmed. It has been also reported that oral morphine dependence facilitates formation of spatial learning and memory via activation of N...

متن کامل

nNOS(+) striatal neurons, a subpopulation spared in Huntington's Disease, possess functional NMDA receptors but fail to generate mitochondrial ROS in response to an excitotoxic challenge

Huntington's disease (HD) is a neurodegenerative condition characterized by severe neuronal loss in the cortex and striatum that leads to motor and behavioral deficits. Excitotoxicity is thought to be involved in HD and several studies have indicated that NMDA receptor (NMDAR) overactivation can play a role in the selective neuronal loss found in HD. Interestingly, a small subset of striatal ne...

متن کامل

Increased stress-evoked nitric oxide signalling in the Flinders sensitive line (FSL) rat: a genetic animal model of depression.

Stress engenders the precipitation and progression of affective disorders, while stress-related release of excitatory mediators is implicated in the degenerative pathology observed especially in the hippocampus of patients with severe depression. Nitric oxide (NO) release following stress-evoked N-methyl-d-aspartate (NMDA) receptor activation modulates neurotransmission, cellular memory and neu...

متن کامل

The actin-severing protein gelsolin modulates calcium channel and NMDA receptor activities and vulnerability to excitotoxicity in hippocampal neurons.

Calcium influx through NMDA receptors and voltage-dependent calcium channels (VDCC) mediates an array of physiological processes in neurons and may also contribute to neuronal degeneration and death in neurodegenerative conditions such as stroke and severe epileptic seizures. Gelsolin is a Ca2+-activated actin-severing protein that is expressed in neurons, wherein it may mediate motility respon...

متن کامل

Vulnerability of central neurons to secondary insults after in vitro mechanical stretch.

Mild traumatic brain injuries are of major public health significance. Neurons in such injuries often survive the primary mechanical deformation only to succumb to subsequent insults. To study mechanisms of vulnerability of injured neurons to secondary insults, we used an in vitro model of sublethal mechanical stretch. Stretch enhanced the vulnerability of the neurons to excitotoxic insults, ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 25 28  شماره 

صفحات  -

تاریخ انتشار 2005